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SUMMARY

Neural modulation in primate motor cortex exhibits
complex patterns. We found that modulation during
reaching could be separated into discrete temporal
epochs. To determine if these epochs are driven by
behavioral events, monkeys performed variations of
a center-out reaching task. Monkeys viewed a com-
puter cursor matched to hand position and a radial
target at 1 of 16 locations. In some trials, they per-
formed a visuomotor rotation (the cursor moved at
an angle to the hand). After adaptation, encoding
changes for single units are temporally structured:
adaptation could affect one temporal component of
a unit’s response but not another. In half the normal
and perturbed trials, we removed visual feedback
before movement. Adaptation-sensitive firing com-
ponents toward the end of movement are often
weak or absent during reaches without feedback.
These results show that temporal structure in motor
cortical activity is driven by behavior, with a discrete
component related to visual feedback.

INTRODUCTION

The primary motor cortex (M1) is thought to play a critical role in

volitional movement, and the activity of M1 neurons is known to

vary strongly with features of behavior. Georgopoulos et al.

(1982) demonstrated that most neurons in M1 are ‘‘tuned’’ to

the direction of arm movement during reaching. These experi-

ments showed that the relationship between a neuron’s firing

rate and the direction of movement is described by a cosine

function. The robustness of this relationship has been taken as

evidence that M1 ‘‘encodes’’ simple representations of move-

ment. However, critics of representational models have argued

that responses of single neurons can be complex, and simple

models often do not account for the temporal details of neuronal

activation (Churchland and Shenoy, 2007). Furthermore, the re-

sponses of M1 neurons covary with a wide range of behavioral

parameters, beyond what would be captured by a unitary tuning

model (Georgopoulos et al., 1992; Kakei et al., 1999; Caminiti

et al., 1990; Zhang et al., 1997). Investigators have attempted
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to improve these simple representational models by including

additional features of movement, but gains in explanatory power

have been modest (Paninski et al., 2004; Aflalo and Graziano,

2006; Suway et al., 2017). Although the early directional tuning

work (Georgopoulos et al., 1982; Schwartz et al., 1988) used

firing rates averaged over the entire movement, with the implicit

assumption of stationary preferred directions (PDs), a number of

studies have revealed time-dependent processing in M1 during

reaching (Georgopoulos et al., 1983, 1989; Pellizzer et al.,

1995; Fu et al., 1995; Zhang et al., 1997; Churchland et al.,

2012; Velliste et al., 2014; Rouse and Schieber, 2016). Recent

work (Suway et al., 2017; Harpaz et al., 2019) has shown that

these changes in directional tuning may take place at discrete

points in the behavioral task, suggesting that they are linked to

changes in the state of the system. Identifying these state

changes using M1 firing rates and linking them to behavioral fea-

tures important for reaching can help us understand the factors

that govern information processing in the motor cortex.

Recently, investigators demonstrated that M1 neurons

abruptly change their firing properties when monkeys transition

from planning a movement to executing the movement (Church-

land et al., 2010; Kaufman et al., 2014; Elsayed et al., 2016; Lara

et al., 2018). This finding was taken as evidence that the same

population of neurons performs separate functions before and

after movement initiation. Results from our lab, and others, indi-

cate that similar abrupt transitions in firing pattern occur at mul-

tiple points during the movement (Suway et al., 2017; Harpaz

et al., 2019). In contrast to a static relation to behavior, this tem-

poral structure suggests M1 undergoes changes in functional

state in conjunction with transitions between behavioral compo-

nents. Some authors have referred to this concept as a ‘‘tempo-

ral parcellation scheme’’ (Johnson and Ebner, 2000), though the

specific parameters that drive neurons remain a topic of debate.

Importantly, the sequences of neural states that can be recog-

nized in motor areas are likely to depend on the specific behav-

ioral components required by a task.

Reaching to an object or target is strongly dependent on

vision. Subjects focus on the target while the moving hand is

registered in the peripheral visual field (Paillard, 1982, 1996). Ac-

curate target acquisition takes place as a series of visually

guided sub-movements as the hand’s image enters the macular

retina (Soechting and Lacquaniti, 1981; Meyer et al., 1988; Mil-

ner, 1992; Novak et al., 2002). Experiments dissociating vision

from movement have provided evidence for visuospatial coding
uthor(s).
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Figure 1. Firing Rate Properties Change after Visual Adaptation

(A) Five repetitions of upward reaches (blue traces) and five of leftward reaches (red traces) in the standard block. The traces represent the physical location of the

hand in space. The red and blue circles represent the displayed position of the targets in VR, which match the hand endpoints in this block.

(B) Same as in (A) but for the rotated block (90� in this session). Note that the positions of the displayed targets are rotated clockwise relative to the hand endpoints

in this block.

(C) Raster plot for one neuron during the same trials in (A), using the same color scheme. Time 0 marks movement onset.

(D) Same as in (C) but for the trials shown in (B).

(E) Smoothed, trial-averaged firing rates for the same neuron during the standard block, with responses plotted for all 16 reach directions (different colored

traces). Black square markers along the abscissa mark the time of target presentation, the onset of movement, and the offset of movement, respectively.

(F) Same as in (E) but for the rotated block. The color scheme is defined with respect to hand direction, not cursor direction.

(G) Tuning curves relative to hand direction, computed for the responses in (E) and (F) averaged over the period marked by the black bar in (E). Solid lines are

model fits (Equation 1 in STARMethods), and dashed lines are observed rates. Number over black bar in (E) reports the angular PD difference between cosine fits.

(H) Same as in (G) but with tuning expressed relative to cursor direction rather than hand direction.

The PDs of the responses in (E) and (F) were very similar when expressed in cursor-centric coordinates.
inM1 and premotor cortex, particularly before themovement be-

gins (Georgopoulos et al., 1989; Pellizzer et al., 1995; Zhang

et al., 1997; di Pellegrino and Wise, 1993). It is also well known

that M1 is active during passive observation of movement, for

example, in ‘‘movement replay’’ tasks (Taylor et al., 2002; Tkach

et al., 2007; Palazzolo, 2015). This result is also an important

aspect of the brain-computer interface paradigm used for neural

prosthetics (Velliste et al., 2008). However, less is known about

the relation between M1 activity and ongoing visual feedback

during movement (although see Schwartz et al., 2004). One pos-

sibility is that the sequence of neuronal states is determined, in

part, by visual information related to the task. To test whether

discrete components of the M1 response during reaching might

be related to visual feedback, we implemented several variations

of the classic center-out reaching task. We first required mon-

keys to adapt to a perturbation that dissociated vision from

movement. Although the armmovements were similar in the per-

turbed condition, we found clear components of M1 activity that

changed after the monkey adapted to the visual perturbation. In

roughly half the trials in both the normal and perturbed condi-

tions, the monkey’s reach trajectory was hidden from view

before the movement began. By comparing neuronal responses

across these trial types, we found that the reach visibility is

important for driving a component ofM1 activity. The relation be-
tween this activity and movement changed after the perturba-

tion, and the activity was much weaker when feedback was

not provided. This component of the response pattern occurred

toward the end of the movements, possibly consistent with a

feedback signal. In fact, the timing of putatively feedback-related

firing relative to reach initiation was remarkably similar to esti-

mates of the minimum processing time for visual feedback

from a movement (Keele and Posner, 1968). Our findings sug-

gest there is a discrete temporal component of M1 activity

related to visual feedback.

RESULTS

Single-Unit Directional Encoding Changes after
Visuomotor Adaptation
We used the property of directional tuning of neurons in M1 to

examine possible effects of visuomotor adaptation on neural

firing. Monkeys made reaches to the same physical targets

before and after adaptation (Figures 1A and 1B). An example

unit recorded during those trials was found to fire strongly during

upward reaches (Figure 1C, blue rasters). If this tuning property

were related to the direction of movement in physical space, one

would expect to see the same response for an upward reach

before and after the monkey adapted to the perturbation.
Cell Reports 29, 3872–3884, December 17, 2019 3873
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Figure 2. Components of Single Unit Responses Are Independently Affected by Visuomotor Adaptation

Each column represents the response of a single neuron for all reach directions in the standard block (top row) and rotated block (bottom row). The responses in

(A)–(D) were from 45� sessions, the response in (E) was from a 67.5� session, and the responses in (F) and (G) were from 90� sessions. Black bars above response

components mark time periods during which we applied the same tuning comparison method as in Figures 1E–1G (i.e., tuning compared between blocks,

computed using hand direction). Numbers above bars show the angular difference in PD between blocks and imply that this difference was statistically significant

(p < 0.05); n.s., no significant difference (p R 0.05). See also Figure S7.
However, during the rotated block, this neuron fired at a much

lower rate for upward reaches (Figure 1D, blue rasters). One pos-

sibility is that this neuron was directionally tuned in virtual reality

(VR) space, rather than physical space. In that case, one would

expect the highest firing rate during trials when the target cue

(and displayed reach trajectory) was upward, even if the monkey

did not physically reach in that direction. This is what was

observed for the example response in Figure 1. The perturbation

was 90� clockwise, such that the upward target cued a reach to

the left (Figure 1B, red traces and red circle). Leftward reach trials

had rates that were similar to those for upward reaches in the

standard block (Figures 1C and 1D, red versus blue rasters), sug-

gesting that cursor-related information was encoded in this

neuron’s activity.

We next examined the firing rate profile of this neuron across

targets and found the profile had a similar shape and timing in

both blocks (Figures 1E and 1F, different colored traces). Note

that the color scheme used for these plots was defined relative

to physical movement direction in both blocks. Encoding proper-

ties previously seen for the raster plots can therefore be recog-

nized qualitatively in the ordering of rates across targets in

Figures 1E and 1F (e.g., light blue versus dark red traces).

Across-target rates averaged over the period marked in Fig-

ure 1E (black bar) were fit well by cosine functions in each task

block (Figure 1G). The preferred directions (PDs) of the fits,

computed relative to physical space, had an angular difference

of about 105� between blocks. The PD in the standard block

was subtracted from that in the rotated block, rather than the

other way around, which yielded a positive difference for re-

sponses that were sensitive to the visuomotor rotation like the

example in Figure 1.

Using a bootstrap procedure, we evaluated the across-trial

consistency of the PD change (Figure 1G) by resampling individ-

ual trials with replacement and re-computing PD change for each

bootstrap iteration. The 95% confidence interval (CI) was [96�,
113�], meaning that the PD change was consistent over trials

within about 17�, suggesting that the effect demonstrated in Fig-

ures 1C–1G is likely related to the task design. To better illustrate
3874 Cell Reports 29, 3872–3884, December 17, 2019
this relationship, we replotted the tuning curves in each block

relative to VR cursor movement direction (Figure 1H). The similar

phase of the cosine functions in Figure 1H indicates that tuning

was similar before and after adaptation when computed relative

to cursor direction, in contrast to the large difference observed

with respect to hand direction, again supporting the idea that

this neuron’s tuning was driven by cursor-related information.

In subsequent figures, firing rates and tuning curves are plotted

with respect to physical movement.

The activity displayed in Figure 1 had only a single modulation

peak. However, M1 neurons often fire with multiple modulation

peaks during reaching (Churchland and Shenoy, 2007; Church-

land et al., 2012; Suway et al., 2017).We observedmany neurons

with multiple modulation peaks in our datasets. Interestingly, in-

dividual modulation peaks often showed a variety of patterns

following adaptation (Figure 2). Some patterns displayed an early

modulation component related to the adaptation, while a subse-

quent component remained unchanged (Figures 2A and 2C).

Others showed the opposite temporal pattern (Figures 2B and

2D). Both components in Figures 2E and 2F were affected by

adaptation, to different degrees. Figure 2G shows a response

with an early component unaffected by adaptation and a second

with a highly reduced amplitude after adaptation. These obser-

vations support the hypothesis that distinct peaks of modulation

correspond to distinct encoding epochs. We also found re-

sponseswith no relation to the adaptation (not shown), indicating

a constant encoding of the physical movement direction.

Although the example response shown in Figure 1 had a tuning

change of similar magnitude to the visuomotor perturbation,

the examples in Figure 2 indicate that the magnitude of change

was variable across responses.

Adaptation Effects Are Widespread and Depend on
Rotation Magnitude
Because the effect of adaptation had a strong time-dependent

effect on single-neuron firing rates (Figure 2), we segmented tri-

als into four epochs using factor analysis (FA; see STAR

Methods). Previously, our group identified three similar epochs
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Figure 3. Neuronal PD Changes Depend on Rotation Magnitude, but Muscle PDs Are Similar after Adaptation

Black traces show significant PD changes; gray dashed traces show non-significant changes. Neurons and muscles could contribute up to four counts to a

histogram (one for each epoch).

(A) PD differences for 45� sessions. Data from both monkeys were comparable and were pooled.

(B) Same as in (A) but for 90� sessions (monkey R only).

(C) Same as in (A) and (B) but for EMG activity instead of neuronal responses.

Data from both monkeys (and rotation angles) were comparable and were pooled. See also Figures S2 and S3.
on the basis of the timing of modulation peaks of single neurons

(Suway et al., 2017). An additional epoch in the current FA pro-

cedure targeted activity during the reaction time and early move-

ment and was included for greater temporal resolution. The four

epochs corresponded to similar behavioral events in both mon-

keys; the first two epochs for monkey P were slightly shifted

forward in time compared withmonkey R (Figure S2A versus Fig-

ure S2B). The shift could be related to performance differences

between monkeys; reaction time and reach duration were both

longer for monkey P.

Once the epochs were defined using FA, we considered firing

rates averaged over 100 ms windows centered on each factor’s

peak. Within each of the four windows, we retained responses

well fit by cosine functions (R2 > 0.5) in both the standard and

rotated blocks. For both monkeys, the proportion of neurons

meeting this criterion was �60% in the first epoch, �50% in

the second, and 30%–40% in the last two. These values are

similar to those previously reported (Suway et al., 2017). We

computed PD differences between the two blocks for each

neuron and epoch (Figure 3; black traces indicate statistically

significant changes). We found that the PD difference between

standard and rotated blocks was related to the magnitude of

the visuomotor perturbation. Differences in PD tended to be

much larger for 90� sessions than for 45� sessions (Figure 3A

versus Figure 3B). This property can also be seen for single-

unit responses (Figures 2A–2D versus Figures 2E and 2F). The

proportion of neurons with a significant PD change (regardless

of magnitude) after adaptation was also larger for 90� sessions

(Figures 3A and 3B, black versus gray histograms). The majority

of PD differences were in the positive direction, like the re-

sponses shown in Figures 1 and 2.

For responses following this pattern, themost common obser-

vationwas a PD change of roughly half the perturbation angle. To

test the possibility that intermediate-valued changes may reflect

an incomplete adaptation process, we re-computed PD changes
using only trials from either the first or second half of the rotated

block. If the intermediate-valued PD changes reflected incom-

plete adaptation, those changes should better match the pertur-

bation angle following additional exposure (i.e., during the

second half of the block). However, the distributions of changes

were similar to those in Figure 3, regardless of which half of the

block trials were sampled from. This consistency suggests the

intermediate-valued PD changes reflect ‘‘mixed’’ selectivity for

visuospatial and physical movement parameters (Lurito et al.,

1991; Shen and Alexander, 1997a), rather than an incomplete

adaptation process.

To compare M1 responses to the concurrent motor output,

we repeated this analysis for electromyography (EMG) activity

(Figure 3C). The EMG factors corresponded to three clear

epochs around movement onset, peak velocity, and movement

offset. A fourth factor had small loadings and contained

several noisy peaks, suggesting that three factors were suffi-

cient for describing these data. PDs of EMG data computed

within the first three EMG epochs were not substantially

different from those computed within the four epochs defined

by the neuronal data. For a more direct EMG comparison

with the neuronal data, we used the neuronal epochs. The

PDs computed from EMG activity tended to be similar be-

tween the two task blocks, though some small differences

were observed in the negative direction, opposite from most

changes in neuronal PDs. There was little difference in this

pattern between individual muscles, with two exceptions: (1)

for the rare case that a significant PD change was observed

for the anterior deltoid, the change was slightly positive, and

(2) a significant PD change in either direction was almost never

observed for the medial deltoid. For both 45� and 90� sessions,
a small subset of the neuronal responses also had negative PD

differences between blocks, with a magnitude similar to those

observed for EMG. This subpopulation may be considered

‘‘muscle-like’’ (Kakei et al., 1999), while responses with a
Cell Reports 29, 3872–3884, December 17, 2019 3875
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Figure 4. Reach Visibility Affects Neuronal Firing

(A) Firing rates of the same unit shown in Figure 1. The top row shows the standard condition; the bottom row shows the rotated condition. The left column shows

visible trials; the right column shows invisible trials. The amplitude of firing was strongly decreased for this neuron when reaches were not visible.

(B) Same as in (A) but for a different neuron. This example response exhibited two modulation peaks when reaches were visible but only one when reaches were

not visible.

See also Figure S7.
positive PD change between blocks may be related to the vi-

suomotor perturbation.

As a control to confirm the observed PD changes were task

driven, we performed a similar PD analysis using only data from

the standard block. Trials were partitioned into two groups, and

the PD difference between them was computed for each trial

epoch. We then repeated the procedure 1,000 times with

new randomly chosen partitions and displayed the PD differ-

ences as angular histograms (Figure S3). We found that these

differences were always near zero, suggesting the larger

changes seen between blocks (Figure 3) were related to the

task.

Features of M1 Responses Are Related to Reach
Visibility
The effects of visuomotor adaptation on the firing patterns of

M1 neurons may be related either to the adaptation process

or to the mismatch between the observed movement and the

physical movement. Here, we compare ‘‘visible’’ to ‘‘invisible’’

trials and show that a component of firing related to the pertur-

bation is also related to visibility. Figure 4 shows firing rates of

two neurons during the four different task conditions: the top

row shows rates in the standard block, and the bottom row

shows rates in the rotated block; for each subpanel, the left col-

umn shows rates for visible trials, and the right column shows

those for the invisible trials. For the response in Figure 4A, dur-

ing visible trials, the PD changed after the adaptation (left col-

umn). This neuron’s firing decreased greatly when reaches

were not visible (right column). A different unit’s response (Fig-
3876 Cell Reports 29, 3872–3884, December 17, 2019
ure 4B) had two modulation peaks during visible trials (left col-

umn). Both peaks were affected by the visual perturbation,

although the second peak was affected to a greater degree

(46� versus 70�). Interestingly, the second modulation peak

was absent when the cursor was invisible (right column). The

first peak was present regardless of cursor visibility, with a

similar PD change following adaptation (38� versus 46�; black
bars above peaks).

The responses in Figure 4 exhibit two interesting patterns.

First, for visible trials, there was a strong effect of the perturba-

tion on their tuning functions late in the movement. Second,

this tuning was weak or absent when feedback was not dis-

played. To determine whether these findings applied to the

sampled population, we again used the FA trial segmentation

procedure. Within each of the four epochs, we computed the

percentage of neurons with a significant PD change in the posi-

tive direction between blocks. These percentages were

computed separately for visible and invisible trials and are

plotted in Figure 5A (blue lines, solid and dashed, respectively).

The factor loadings marking the four epochs are also displayed

for reference (black traces). If the visibility-related firing patterns

shown in Figure 4 were common across the population, we

would expect to find more neurons with significant PD changes

between blocks for visible trials compared with invisible trials,

particularly late in the movement. We found that regardless of

reach visibility, the percentage of neurons with a significant PD

change was large early in the trial, during the reaction time (first

epoch). This percentage dropped after the movement was initi-

ated (second epoch). The third and fourth epochs occurred
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Figure 5. Visibility-Related Tuning Changes

Occur toward the End of Movement

(A) Percentage of neurons exhibiting PD change

(p < 0.05) in the positive direction between stan-

dard and rotated blocks, computed for visible and

invisible trials (blue traces, solid and dashed,

respectively; scale on left ordinate). Percentage

was computed within the four epochs (black

Gaussian-shaped traces; scale on right ordinate).

One 90� session from monkey R is shown.

(B) Change in modulation depth between visible

and invisible trials for epoch 4 (black bar in A).

Histogram includes responses with a positive sig-

nificant PD change between blocks in the visible

condition. Data in (B) were pooled over 90� ses-

sions from monkey R.

(C) Same as in (A) but for monkey P (45� sessions).
(D) Same as in (B) but for monkey P.

See also Figures S4 and S6.
around peak movement velocity and the end of movement. Dur-

ing those epochs, the percentage of neurons with a PD change

after adaptation increased when the monkey could see the

cursor motion but decreased when it could not. Activity related

to the perturbation but not to visual feedback (i.e., during epochs

1 and 2) may be a hallmark of the adaptation process. Activity

related to both task parameters, occurring toward the end of

behavior (i.e., epochs 3 and 4), may be consistent with a feed-

back signal.

The example responses in Figure 4 showed decreased modu-

lation amplitude around the end of the movement when reaches

were not visible, and this decrease might explain why fewer PD

changes were observed toward the end of these trials. To

address this possibility, we focused on the fourth epoch of visible

trials and selected neurons with positive PD changes after adap-

tation. We then computed the percentage change in modulation

depth between visible and invisible trials (Figure 5B). Tuning

amplitude commonly decreased in the invisible trials, with the

firing of many units showing a nearly complete loss of modula-

tion. This pattern is similar to the responses shown in Figure 4.

The results in Figures 5A and 5B were computed using a 90�

session recorded frommonkey R. A strikingly similar time course

of effects was observed for monkey P (45� sessions; Figure 5C),

though the overall percentage of PD changes after adaptation

was smaller (see also Figure 3A versus Figure 3B). Changes in

modulation depth were also similar between monkeys: neurons

with positive PD changes in epoch four of visible trials commonly

showed lower tuning modulation during invisible trials (Fig-

ure 5D). From these results, it appears that reach visibility is
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important for driving M1 activity toward

the end of a reach. This component is

affected by the perturbation during visible

trials and is not as strongly modulated

when vision is absent. However, we also

found other patterns. From Figure 5, it is

clear that some responses maintain a

relation to the perturbation with strong

modulation late in the movement, even
en the movement was not visible. Examples of different types

patterning are illustrated in Figure S4.

coding Cursor Direction Captures Activity Related to
ach Visibility
xt, we investigated whether the displayed (VR) movement di-

ction could be extracted or decoded from the population.

verse regression was used to build a decoder using linear

mbinations of the neural data that captured the displayed

ovement direction (see STARMethods). All units were included

the analysis regardless of their relation to the visuomotor

rturbation; that is, we did not pre-select responses with signif-

nt adaptation-related tuning changes. Instead, our regression

ocedure naturally weighted responses with this property more

avily than those without. This procedure yielded two linear

mbinations of rates: one for decoding the x-component and

other for the y-component of the displayed direction.

We identified these decoder weights using only the visible tri-

. Figures 6A and 6B show one set of decoder outputs, in this

se for the y-component of displayed direction. In the standard

ndition, shortly after the target appeared, decoder output was

sitive for upward reaches (Figure 6A, blue traces), and nega-

e for downward reaches (red and orange traces). This is the

pected pattern for a representation of the y-component. In

e rotated condition, the activation pattern changed (Figure 6B).

te that the color scheme of the traces is defined with respect

physical space, such that blue traces (for example)

ays indicate upward movement, even if the VR cursor was

oving in a different direction. Figure 6 shows data from a 90�
s 29, 3872–3884, December 17, 2019 3877
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Figure 6. Accurate Decoder Readout of Displayed Direction Depends on Cursor Visibility

(A) Decoder output for the y-component of displayed direction in the standard block. Different colored traces show output for reaches to each target.

(B) Same as in (A) but during the rotated block. Note that the ordering across targets has changed, though the decoder weights were the same.

(C and D) Same as in (A) and (B) but for invisible trials. Output amplitude became weaker, and ordering of targets became less clear late in the movement.

(E) Integrated trajectories from the decoder shown in (A)–(D) (ordinate) and a second decoder for the x-component of displayed direction (abscissa). Trajectories

during the standard block are shown for visible trials. Different colored circles around the edges mark the physical target position.

(F) Same as in (E) but for the rotated block. Note that the trajectories have rotated 90� clockwise in this block, though the physical targets are the same.

(G and H) Same as in (E) and (F) but for invisible trials. Trajectories during invisible trials were shortened and distorted toward the end of movement, relative to

visible trials.
session; in the rotated block, leftward physical reaches were

associated with upward displayed movement. Because the

decoder should track the displayed direction, we would then

expect positive output for leftward reaches. Indeed, during the

rotated block, output was positive-going for leftward reaches

(Figure 6B, dark blue and red traces), and negative-going for

rightward reaches (light orange and light blue traces). Although

the same decoder (built from the visualized cursor directions)

was used in both Figures 6A and 6B, the decoded components

were nearly orthogonal, matching the y-component of displayed

movement direction closely in both blocks: the 5-fold cross-vali-

dated R2 values were 0.91 and 0.94 in the standard and rotated

blocks, respectively. A similar result was found for the x-compo-

nent decoder, yielding cross-validated R2 values of 0.90 and

0.94 in the standard and rotated blocks. The high degree of ac-

curacy over cross-validated iterations indicates these results

were consistent over trials when the movement was visible.

Next, the rates recorded during invisible trials were used in the

decoder constructed from the visible trials (Figures 6C and 6D).

For those invisible trials, the decoder result was comparable with

that for visible trials shortly after the target appeared, during the

early part of the movement. Over that time span, the across-

target pattern and amplitude were comparable regardless of vis-

ibility. However, later in the invisible trials, decoder output

decreased in amplitude, and the ordering across targets became

less clear (Figures 6C and 6D). This pattern matches closely with

that described for the tuning analysis of single-unit responses in

Figure 5.
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To better visualize the output of both decoders (one for the

x- and one for the y-component), we integrated their values

over time and plotted the resulting trajectories for each condi-

tion (Figures 6E–6H). This integration procedure is similar to

that used in the classical population vector algorithm

(Schwartz, 1994; Schwartz and Moran, 1999). In the standard

block, the trajectories were relatively straight and accurate

(Figure 6E). A similar result was found during the rotated block

(Figure 6F), in which the trajectories were rotated nearly 90�,
closely matching the displayed direction. The same procedure

for invisible trials yielded trajectories that initially matched

those of the visible trials (Figures 6G and 6H). However, in

both the standard and rotated blocks, the trajectories did not

extend as far and became distorted at the end of the task.

We next quantified this temporal structure in the decoder

output. Averaged over epochs one and two, y-component

decoder output across targets closely fit a sine function, peaking

near 90� (upward) in the standard block (Figure 7A, blue traces).

The sinusoid shifted phase during the rotated block, becoming

centered near 180� (leftward; Figure 7A, red traces). Using a

bootstrap procedure, we found this phase difference to be

consistent over trials (95%CI = [78�, 92�]; Figure 7B). In contrast,

during epoch four, across-target activation was poorly fit by si-

nusoidal functions and was inconsistent over trials (Figures 7C

and 7D). This result reflects the single-neuron analyses pre-

sented in Figure 5: late in the movement, a component of the

response related to the perturbation was less prominent if the

movement was hidden from view.



A C E

F H

G

DB

Figure 7. Decoder Output Is Inconsistent Late in the Movement for Invisible Trials

(A) Same decoder output shown in Figures 6C and 6D, averaged over epochs 1 and 2, and plotted against physical reach direction. Blue traces are from the

standard block (i.e., Figure 6C), red traces from the rotated block (i.e., Figure 6D). Dashed traces show observed data, solid traces showmodel fits (Equation 1 in

STAR Methods).

(B) Phase difference between the two model fits in (A), shown over bootstrap iterations. The difference was consistently near 90�.
(C and D) Same as in (A) and (B) but averaged over epoch 4. Late in invisible trials, the readout was noisy and inaccurate.

(E–H) Same as in (A)–(D) but for monkey P (45� visuomotor rotation). Readout for the x-component of displayed direction is shown.
Data in Figures 7A–7D are from a 90� session from monkey R.

For monkey P, we recorded data only for 45� sessions; the phys-
ical and displayed movements were not perfectly orthogonal.

The correlation between them (r z 0.7) likely causes decoder

output to represent a mixture of activity related to displayed

and executed movement. Nonetheless, we found similar trends

for monkey P: averaged over epochs 1 and 2, the x-component

decoder output was well fit by a sinusoid centered near

0�(rightward) in the standard block (Figure 7E, blue traces),

which shifted 25� during the rotated block (95% CI = [12�, 37�];
Figures 7E and 7F). During the fourth epoch, no phase change

was observed (95% CI = [�19�, 21�]; Figures 7G and 7H).

Decoder output in epoch four was slightly noisier and weaker

than for epochs 1 and 2. Compared with the results for the 90�

session, these effects were more moderate (Figures 7C and 7D

versus Figures 7G and 7H). A similar result was observed for a

45� session from monkey R, including a slight undershoot of

the rotation angle between blocks for the early epochs.
Physical Reach Direction Is Well Represented
Regardless of Task Condition
Although many neurons responded in different ways before and

after adaptation, and during visible and invisible trials, we

wondered if signals related to the physical movement could still

be extracted accurately in each case. We therefore repeated the

analysis described above but used the reverse regression pro-
cedure to decode the physical reach direction, rather than the

displayed reach direction. Units were included regardless of

whether their responses had adaptation-related tuning changes.

Regression was again performed using only visible trials.

Accuracy was relatively high: the cross-validated R2 values for

the y-component were 0.89 and 0.93, with 0.87 and 0.93 for

the x-component in the standard and rotated blocks, respec-

tively. Moreover, decoder output was similar both before and af-

ter adaptation. This is the expected pattern for a decoder that

predicts physical reach direction, which was identical in each

block. Interestingly, output in both blocks was relatively consis-

tent even during invisible trials (albeit slightly weaker for invisible

trials in the standard block). These results suggest that the phys-

ical movement was consistently represented in M1 activity

regardless of visual context, in line with the finding that a consid-

erable portion of responses did not change PD in the rotated

block (Figures 3A and 3B).
Kinematics and Muscle Activity Were Generally
Comparable across Task Conditions
Movement kinematics were highly comparable across task con-

ditions. We quantified this using vector field correlation to mea-

sure the similarity between the time series of velocity vectors

duringmovement for each possible pair of conditions (Shadmehr

and Mussa-Ivaldi, 1994). Pairwise correlations for all sessions

were very high, ranging from 0.96 to 0.99. In general, patterns
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of muscle activation were also comparable across conditions

(Figure S5). From Figure 3C, we would expect the EMG data to

have similar tuning properties, relative to kinematic direction,

before and after adaptation. Indeed, the across-target ordering

of activity was comparable in both blocks (Figure S5, top versus

bottom rows). An exception can be seen in the antagonist burst

of the medial deltoid.

EMG differences between visible and invisible trials were also

generally subtle (Figure S5, left versus right columns in each

panel). One important exception was the second agonist burst

for some muscles. For example, triceps activity around move-

ment offset was weaker during invisible trials than during visible

trials (Figure S5C). This can be seen to a lesser degree in the

medial deltoid (Figure S5A) and wrist flexor (Figure S5B). One

possibility is that the later EMG activity during visible trials is

related to online error correction or trajectory stabilization.

Reaching movements are composed of a primary arm displace-

ment followed by one ormore corrective sub-movements. These

secondary sub-movements are thought to be modulated by

‘‘active processing of visual feedback’’ (Meyer et al., 1988), a

view supported by our EMG data.

The decrease in late-movement EMGmodulation during invis-

ible trials is also noteworthy because we observed weaker

neuronal modulation around movement offset for those trials.

However, those decreases in modulation were associated with

PD changes in the positive direction following adaptation when

reaches were visible, which was not a prominent feature of

EMG patterns (Figure 3C). Furthermore, the magnitude of mod-

ulation change between trial types was not as large for EMG ac-

tivity. To quantify this, we computed tuning functions of each

muscle during epochs 3 and 4 and compared their amplitudes

in visible and invisible trials (Figure S6). Although many muscles

were less strongly activated when reaches were not visible, this

decrease was only �14% smaller, on average, across all obser-

vations. When we restricted the analysis to just the fourth epoch,

the decrease was slightly larger, �23% on average. This rela-

tively small decrease may not be surprising given that the phys-

ical movement direction was well represented in firing rates

throughout both visible and invisible trials. Nonetheless, it is

possible that the decreased neuronal modulation we observed

around the end ofmovement for invisible trials was in part related

to the decreased EMG modulation around the same time.

Previous results show that tuning patterns of single neurons

changed sequentially and discretely during normal center-out

reach trials (Suway et al., 2017). Here, we found that these tuning

changes were commonly associated with a transition in encod-

ing properties. For example, Figure 2 shows several responses

with multiple modulation epochs, and these could be differently

affected following visuomotor adaptation. Figures 4 and S4

show multi-peaked responses that were affected differently by

the visibility of the reach. Although EMG activity patterns were

also multi-phasic during our reaching tasks, their encoding pat-

terns did not change abruptly. To illustrate the nature of neuronal

encoding changes, and to contrast them with EMG patterns, we

compared the activity of each between task types using a sliding

correlation analysis (Figure S7). We found that abrupt changes in

the correlation of neuronal responses between tasks were com-

mon, whereas this was not true for the recorded EMG activity.
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DISCUSSION

Numerous lines of experimentation show that M1 modulation is

correlated to surprisingly diverse aspects of motor control.

This activity is related to muscle excitability (Fetz and Cheney,

1980; Schieber and Rivlis, 2005; Griffin et al., 2015), force

production (Cheney and Fetz, 1980; Kalaska et al., 1989; Geor-

gopoulos et al., 1992), limb kinematics and geometry (Georgo-

poulos et al., 1982; Moran and Schwartz, 1999; van Hemmen

and Schwartz, 2008), visuospatial processing and visuomotor

transformation (Zhang et al., 1997; Alexander and Crutcher,

1990a; Shen and Alexander, 1997a), and cognitive processing

(Georgopoulos et al., 1989; Pellizzer et al., 1995). M1modulation

occurs even in the absence of any active movement, for

example, during passive ‘‘movement replay’’ tasks (Taylor

et al., 2002; Tkach et al., 2007; Palazzolo, 2015). In one study,

M1 responses during replay of a monkey’s movement were

found to be similar to those observed during the actual move-

ment. Replay activity matched movement activity when both

the visual target and the feedback cursor were visible, though

displaying the visual target alone was often sufficient for evoking

a movement-like response. The authors suggested that ‘‘neural

activity during [passive] observation is attributable to covert gen-

eration of a motor command’’ (Tkach et al., 2007). In contrast,

during active movement, we found that a major response

component was absent or reduced whenwe displayed the visual

target but not the feedback cursor (Figures 4, 5, and 6). This

result suggests that the feedback-dependent response compo-

nent was related to active monitoring of the ongoing movement,

without being critical for movement generation. Therefore, the

role of visual feedback in drivingM1 seems to depend on context

(i.e., whether the subject is actively moving).

Several investigators have also examined firing rates in M1

during movements for which the stimulus or visuospatial proper-

ties of the task were dissociated from physical movements. For

example, Georgopoulos et al. (1989) used a ‘‘mental rotation’’

task in which a monkey reached 90� counterclockwise to a stim-

ulus/cue direction. They found that the population vector calcu-

lated fromM1 firing rates initially pointed in the stimulus direction

before rotating toward that of the movement. A subsequent

study used a ‘‘context recall’’ version of the task in which the

monkey relied on a sequence of stimuli to determine the correct

movement direction (Pellizzer et al., 1995). In this task, M1 neu-

rons first coded for the direction of the stimulus in the sequence

that cued the correct response and then abruptly changed 100–

150 ms later to code the direction of the upcoming movement.

Here, we also commonly observed abrupt changes in the encod-

ing coordinate system, though we found these changes

occurred at multiple points during a movement (Figures 2, 4,

S4, and S7).

Other related dissociation paradigms have involved

comparing neuronal responses during two types of movements:

those made toward a stimulus/cue (‘‘compatible’’ or

‘‘congruent’’ conditions) and those made in the direction oppo-

site from the stimulus (‘‘incompatible’’ or ‘‘incongruent’’ condi-

tions). For flexion and extension of the wrist (Zhang et al.,

1997) or elbow (Alexander and Crutcher, 1990a), many M1 neu-

rons initially coded the stimulus direction and later coded the



movement direction, a finding comparable with those from the

‘‘mental rotation’’ and ‘‘context recall’’ tasks. A similar trend

was observed for M1 activity during the tasks presented here.

For example, after monkeys adapted to a visuomotor rotation,

the largest percentage of neurons with significantly altered tun-

ing was observed during the reaction time and very early in the

movement (Figures 5A and 5C). This percentage declined about

150 ms later, consistent with the previous studies. In that work,

the dissociation between the stimuli and physical movement

ended before the movement began, and the movement was

essentially unaltered by any of the preceding events. During

the rotated block in the tasks presented here, the dissociation

between vision and movement was constant, and tuning

changes related to this dissociation were common late in the

movement, particularly when the cursor motion was visible (Fig-

ures 5A and 5C, blue solid traces). A similar result was found in a

four-target joystick-controlled movement task with a similar vi-

suomotor rotation (Shen and Alexander, 1997a), suggesting

that this type of encoding in M1 is not related only to movement

initiation.

Regardless of the time course of perturbation-related PD

changes, we found the magnitude of those changes tended to

be larger for larger perturbations (Figures 3A and 3B). Most of

the observed tuning changes were in the positive direction, cor-

responding to adaptation to the perturbation. For example, the

neuronal response in Figure 1 had an upward PD during the stan-

dard block but a leftward PD during the rotated block (a counter-

clockwise rotation is positive by convention). Cursor movement

displayed in VR was upward during the standard block for up-

ward physical movements and upward during the rotated block

for leftward physical movement; this property was apparently re-

flected in the firing of the neuron. Although most of the observed

PD changes followed this pattern, those changes were often

smaller than the angle of the perturbation. This may be in line

with results of previous studies showing ‘‘mixed’’ selectivity for

visuospatial and physical movement parameters, rather than

‘‘pure’’ selectivity for one or the other (Lurito et al., 1991; Shen

and Alexander, 1997a).

Activity in M1 related to visuospatial task features has

commonly been interpreted as a hallmark of a sensorimotor

transformation (Kalaska et al., 1997), a process hypothesized

to involve a serial sequence of steps that converts movement-

relevant sensory information (i.e., visuospatial stimuli) into an

appropriate motor response. In the experiments described

here, we used a VR system to dissociate vision and movement

rather than simply cueing an ‘‘incongruent’’ response, raising

the possibility that the observed tuning changes were related

to some adaptation process following the dissociation. The

tuning changes might represent a mixture of both visuospatial-

related coding and adaptation-related effects on firing

properties, though our experiments did not dissociate these

possibilities.

Tuning changes late in the movement are related to the visibil-

ity of the cursor trajectory, and althoughmany studies of ‘‘senso-

rimotor transformation’’ have focused on neural events around

movement initiation, some work has also examined feedback-

related firing during or following behavior. In one study, wedge

prisms were used to induce visual error prior to movement,
and the firing of many M1 neurons was found to share mutual in-

formation with this error following the movement (Inoue et al.,

2016). Another study introduced a ‘‘cursor jump’’ perturbation

mid-movement, in which the random displacement of a feed-

back cursor necessitated a corrective movement (Stavisky

et al., 2017). Shortly after that perturbation, putative feedback-

related responses in M1 firing rates were found. In the present

study, a component of M1 activity, normally observed late in

the movement, was weak or absent if the cursor trajectory

was not displayed, consistent with a feedback-driven neural

response (Figures 4, 5, 6, and 7). This tuning of this response

component was also related to the visuomotor rotation when

the cursor trajectory was visible, as would be expected for a

signal related to monitoring the VR scene. When responses dur-

ing visible and invisible trials were compared, this component

appeared to constitute a discrete phase or epoch of single unit

firing (Figures 4, S4B, S4C, andS7C).

The observation that many neurons changed their encoding

properties discretely during movements is of interest in light of

recent efforts to elucidate the ‘‘dynamics’’ of M1 activity during

behavior (Churchland et al., 2010, 2012; Shenoy et al., 2013;

Russo et al., 2018). These efforts have routinely been imple-

mented using dimensionality reduction techniques to visualize

the temporal evolution of firing rates from a large population of

neurons. A common result from thesemethods is that population

activity appears to trace out a smooth curved trajectory as it

evolves in time, leading to the hypothesis that firing rates are

subject to a set of dynamical rules that govern the way the

pattern at onemoment follows lawfully from the previous pattern.

We used related methodology here to find dimensions in our

data that were useful for decoding the displayed cursor move-

ment (Figure 6) or the physical movement. During invisible trials,

activation along the displayed movement dimensions began

decreasing gradually 100–150 ms after movement onset, reach-

ing near zero around the time the movement ended (Figures 6C

and 6D). Although this visualization conveyed a relatively gradual

evolution toward zero, the underlying changes in single-unit

firing were often abrupt (see especially Figures 4B, S4B, S4C,

and S7C). This rapid change found in individual units was likely

obscured in population-level analyses because of slight changes

in the timing of single-unit responses (Georgopoulos et al., 1982;

Moran and Schwartz, 1999; Cisek and Scott, 1999).

The concept of smoothly evolving lawful neuronal dynamics,

although appealing, may simply reflect the smooth changes

characteristic of movement kinematics (Flash and Hogan,

1985). A ‘‘temporal parcellation scheme’’ may constitute a useful

compromise between these two descriptions of M1 activity

(Johnson et al., 2001). Much like the ‘‘dynamical systems’’

perspective, this scheme predicts that firing rates covary with

task-related parameters in a time-varying sequence (Shenoy

et al., 2013). However, information encoded in this sequence is

likely determined by the particular set of kinematic parameters

(Fu et al., 1995), visuospatial features (Georgopoulos et al.,

1989; Pellizzer et al., 1995; Zhang et al., 1997; Alexander and

Crutcher, 1990a), reach-to-grasp requirements (Rouse and

Schieber, 2016), or feedback constraints (Inoue et al., 2016;

Stavisky et al., 2017) of a given behavior, rather than by fixed

evolution rules. Similarly, the abrupt changes in state signified
Cell Reports 29, 3872–3884, December 17, 2019 3881



by changes in tuning that we report here are likely input driven.

Importantly, recent dynamical systemsmethods explicitly model

network inputs (e.g., Pandarinath et al., 2018), in contrast to

other approaches that have placed emphasis on locally driven

network state (Churchland et al., 2012; Russo et al., 2018).

A major finding reported here is that neuronal encoding transi-

tioned abruptly from one parameter to the next. Other examples

of abrupt patterning in M1 have been reported in several con-

texts: at the transition from planning a movement to starting

the movement (Elsayed et al., 2016; Lara et al., 2018), upon se-

lecting the correct movement response from a sequence (Pelliz-

zer et al., 1995), when monkeys transition between distinct

modes of behavior (Abeles et al., 1995; Velliste et al., 2014),

and during single reaching movements (Suway et al., 2017; Har-

paz et al., 2019). Discrete, step-like transitions in firing have also

been reported in other macaque brain regions (Latimer et al.,

2015). In the songbird brain region RA (robust nucleus of the ar-

copallium), neurons produce sequences of spike bursts associ-

ated with discrete song syllables (Yu and Margoliash, 1996;

Hahnloser et al., 2002). Broadly, these types of discrete activity

patterns may be a hallmark of ‘‘cell assemblies,’’ groups of neu-

rons that are transiently and simultaneously active during

behavior. These assemblies are hypothesized to underlie a gen-

eral ‘‘neural syntax’’ for brain operations (Abeles et al., 1993;

Buzsáki, 2010).

We found that firing patterns of many single units in M1 re-

flected the behavioral parameters of each task. Given that M1

is a major source of corticospinal efferents (Porter and Lemon,

1993), we might expect that some aspects of these observed

changes would also be found in muscle activity. This was gener-

ally not the case for tuning changes following adaptation, which

were largely dissimilar for firing rates and EMG (Figures 3A and

3B versus Figure 3C). Specifically, neuronal tuning changes

were most often in the positive direction and could be very large,

whereas tuning changes for EMG activations were almost al-

ways in the negative direction and tended to be relatively small.

However, for a small subset of neuronal responses, we did

observe PD changes following adaptation that could be consid-

ered ‘‘muscle-like’’ (Kakei et al., 1999). We also observed

changes in modulation strength from visible to invisible trials

for both firing rates (Figures 5B and 5D) and EMG activity (Fig-

ure S6), although those decreases were typically much larger

for neurons. Classically, reaching movements have been viewed

as composed of two phases: an initial ‘‘transport’’ phase,

considered to be ballistic, and a target-homing phase that de-

pends heavily on visual feedback (Woodworth, 1899). Meyer

et al. (1988) found that the initial ‘‘transport’’ phase of reaching

was invariant in the absence of visual feedback, whereas this

was not true of secondary corrective sub-movements. It is there-

fore likely that the enhanced EMG activation observed during

visible trials was related to visually guided sub-movements. A

related possibility is that without feedback, some of the changes

in neuronal activity were related to the corresponding absence of

visually guided sub-movements, though this explanation alone is

unlikely to account for all of the changes we observed.

Our findings are compatible with the general concept that the

motor system is driven by latent sources related to behavioral

events (Johnson et al., 2001). From a dynamical systems view
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of M1 activity, this could be interpreted as input-generated

changes in neural state. Our results suggest that at least one

input is derived from visual feedback associated with the moving

cursor and that this input is received toward the end of move-

ment. The sequences of discrete encoding patterns imply the

system is governed by ‘‘attractor states’’ (Abeles et al., 1995)

in addition to, or instead of, smooth rotational dynamics

(Churchland et al., 2012). Future work could be focused on iden-

tifying other drivers and characterizing how they act as input to

alter system state.
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Other

MAP Data Acquisition System Plexon Inc. https://plexon.com/products/map-data-acquisition-system-plexon/

Cerebus System Blackrock Microsystems LLC https://www.blackrockmicro.com/neuroscience-research-products/

neural-data-acquisition-systems/cerebus-daq-system/

Utah Array Blackrock Microsystems LLC https://www.blackrockmicro.com/electrode-types/utah-array/

RZ2 Bioamp Processor Tucker-Davis Technologies https://www.tdt.com/component/rz2-bioamp-processor/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Andrew B

Schwartz (abs21@pitt.edu). The data supporting the current study have not been deposited in a public repository but are available

from the corresponding author upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two adult male monkeys (Macaca mulatta, R and P) were used in the present study. All procedures for the care and use of these

animals were in accordance with the guidelines of the NIH and were approved by the Institutional Animal Care and Use Committee

of the University of Pittsburgh.

METHOD DETAILS

Behavioral Task
Monkeys were trained to perform reaches with their right arms while viewing a virtual reality (VR) environment through a depth-dis-

playing monitor (Virtual Window, Dimension Technologies Inc.). The monkeys could not see their own arms during the task; instead,

they were shown a spherical cursor in VR representing their arm positions. Cursor radii were about 0.3 cm (all such measures refer to

length in physical space). Position was tracked optically at 50 Hz using an Optotrak 3020 motion capture system (Northern Digital

Inc.). The monkeys performed several variations of the center-out reaching task. In each task, monkeys began a trial by holding their

arms steady for 500-700ms in the center of the workspace volume, marked by a spherical target with a radius of 0.6 cm. A peripheral

target of the same size then appeared, cueing the monkey to begin moving. Targets could appear at one of 16 evenly spaced posi-

tions around the home position, forming a circle with a 6 cm radius. The targets were arranged in the vertical plane, though the task

required 3D movement control; reaches in front of or behind a target were not rewarded. Monkeys were permitted 600-800 ms to

reach the target and received a liquid reward for each successful trial.

We leveraged the VR paradigm to impose a visual perturbation during behavior. Each session was split into two blocks with a

roughly equal number of trials. In the first block, no visual perturbation was applied (‘‘standard block’’). At the end of this block,

we gradually altered the mapping from hand position to VR cursor position such that the movement direction of the cursor was

rotated clockwise relative to the movement direction of the hand. This paradigm is commonly referred to as a ‘‘visuomotor rotation.’’

The angle of rotation was increased over the course of 15-25 trials, and then remained fixed at its final value for the entire second

block (‘‘rotated block’’). The final rotation angle varied day to day and could be one of 45�, 67.5�, or 90�. Each of these angles is

an integer multiple of the target spacing (22.5�), which ensured the same physical targets were reached in both task blocks. The

scene displayed in VR did not change in the rotated block, and monkeys were required to learn the new hand-to-cursor mapping

through trial and error over task repetitions. Initially, monkeys made large angular errors that had to be corrected, but performance

gradually recovered as they adapted to the perturbation. This adaptation period was usually completed within about 100 trials, which

were excluded from analysis.

The inclusion of a visuomotor rotation was intended to provide away of identifying ‘‘higher-order’’ neural responses, i.e., responses

that don’t covary strictly with motor output. A perturbation-related response in our task could be driven by at least two distinct
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processes. One process may be related to the rapid adaptation that occurs early in the rotated block, usually completed within tens

or hundreds of trials after the rotation is applied (Wise et al., 1998; Krakauer et al., 2000). This adaptation is marked behaviorally by a

gradual decrease in the angular error of the reach, and neurophysiologically by changes in neuronal activity relative to the unper-

turbed condition (Shen and Alexander, 1997a). The processing of the scene displayed in VR during a reach may be another factor

driving changes in M1 firing patterns. That is, visual feedback from the cursor movement may drive firing. To dissociate these pro-

cesses, we randomly selected 50% of the trials in both the standard and rotated blocks, and disabled the cursor display before the

movement began, 140 ms after the target appeared (‘‘invisible trials’’). The monkeys were not cued before the cursor disappeared,

and the cursor did not reappear until the start of the subsequent trial. Center-out reaching tasks commonly require stopping and hold-

ing within a target zone, which is difficult without visual feedback. We therefore omitted the terminal hold period for tasks used in this

study; monkeys were rewarded upon touching the target with the cursor. The terminal hold period was omitted in all trials, regardless

of whether feedback was provided.

Neuronal Recordings
Monkeys were chronically implanted with 96-channel microelectrode ‘‘Utah’’ arrays (Blackrock Microsystems), which were inserted

into the arm area of the primary motor cortex. Monkey R was implanted with two arrays; units were recorded from a single array in

monkey P. Extracellular voltage signals measured from the electrode arrays were amplified, filtered, and digitized using either a

Plexon MAP system (Plexon Inc.) or a Blackrock Cerebus system (Blackrock Microsystems). Spike waveforms were sorted manually

offline using Plexon Offline Sorter (OFS, Plexon Inc.). Unit isolation was judged based on waveform, cluster separation, inter-spike

interval histogram, autocorrelation, and cross-correlation with other units on the same electrode. Only well-isolated units were saved

for further analysis.

EMG Recordings
Intramuscular EMG activity was recorded from several arm muscles, including the anterior deltoid, medial deltoid, biceps, triceps,

flexor carpi radialis, and extensor carpi ulnaris. EMG electrodes consisted of 38-gauge multi-stranded stainless-steel wires with

Teflon insulation (Cooner Wire, Chatsworth, CA). A 25-gauge needle was used to insert the wires into the muscles transcutaneously.

Pairs of wires were used in each muscle for bipolar recordings. After each experiment, the arm was wrapped in a semi-rigid cast to

preserve the electrode insertions for a few consecutive days. Raw EMG signals were differentially amplified and sampled at approx-

imately 2 kHz using a Tucker-Davis Technologies recording system. The recorded signals were bandpass-filtered between 100 Hz

and 1000 Hz, rectified, and lowpass filtered at 7 Hz to compute the envelope. Lastly, the EMG data were downsampled to 50 Hz to

match our other data signals. For monkey R, neurophysiological data were collected simultaneously with EMG data. EMG data from

monkey P were collected in sessions separate from those in which M1 unit activity was recorded. For monkey P, the wrist extensor

was not consistently activated over trial repetitions and was excluded from analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Preprocessing
We computed neuronal firing rates by counting the number of spikes in 20ms bins and dividing by the bin width to yield spikes/s (Hz).

Rates were square-root transformed (Ashe and Georgopoulos, 1994; Moran and Schwartz, 1999) and smoothed using a Gaussian

kernel with a 50msSD. For each neuron, we subtracted the across-targetmean at each time bin to give a target-dependent change in

rate. This procedure allowed us to focus on tuning properties, rather than on target-independent dynamics (Churchland et al., 2012;

Suway et al., 2017). The magnitude of the across-target mean could vary across trial types (standard versus rotated, visible versus

invisible), though a comprehensive analysis of this variation was outside the scope of our study. For visualization only, we applied ‘‘PC

smoothing’’ to firing rates (Churchland et al., 2010, 2012). This was applied to neuronal responses separately within each task type to

prevent artificially mixing response properties.

Figure S1 shows a comparison of firing rates processed using these steps along with a less-processed version of the same rates.

For panels A and B, the left-hand column shows rates computed using a 10 ms bin width and smoothed using a Gaussian with a

20 ms SD. The across-target mean (black line) was not subtracted at each time step, and PC smoothing was not applied. The

right-hand column shows the same rates but processed as described above. As previously reported (Suway et al., 2017), using a

narrower smoothing kernel did not generally reveal important higher-frequency response components.

For each trial, we identified the time of the target’s appearance, the onset of the movement, the peak velocity, and the offset of the

movement. Movement onset and offset were defined as the times when the arm reached 20% of its maximum speed for each trial.

Neuronal firing rates, hand kinematics, and EMG signals were normalized in time and aligned using these behavioral landmarks. This

was accomplished by setting a fixed number of time bins between epochs and interpolating each trial tomatch this number (using the

‘‘pchip’’ function in MATLAB, MathWorks, Natick, MA). The kinematics of each trial were inspected to ensure that reaches were

straight and accurate, with bell-shaped velocity profiles. Excessively curved reaches were discarded. These trials primarily occurred

during the adaptation period between blocks. We chose to analyze only straight reaches so that the time-course of behavior was

consistent on each trial. Monkeys were well-trained on each task and only a small proportion of trials was discarded: we retained

85% and 80% of successful trials for monkeys R and P, respectively.
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For monkey P, we analyzed four neurophysiological and behavioral datasets, as well as EMGdata recorded over two days. For this

monkey, we were only able to record meaningful neurophysiological data during sessions with a 45� visuomotor rotation due to

degradation of the array signal for later sessions. We analyzed five neurophysiological and behavioral datasets from monkey R,

including three sessions with a 90� perturbation, one session with a 67.5� perturbation, and one with a 45� perturbation. Two of

the 90� sessions for this monkey also included simultaneously recorded EMGactivity. Sessions frommonkey R included 143 neurons

per day on average (SD = 43.6 neurons, 715 total observed neurons). Sessions from monkey P included 35.5 neurons on average

(SD = 5.8 neurons, 142 total observed neurons). Because so few neurons were observed daily for monkey P, we combined these

datasets before analysis.

Tuning Curve Analysis
Wecomputed cosine tuning functions using the recorded neuronal firing rates and handmovement directions. Thesewere calculated

using ordinary least-squares linear regression and the following cosine tuning model:

y = k +B$cos q� qPDð Þ+ ε (1)

where y is the estimate of a neuron’s firing rate, k is the baseline rate, B is the amplitude of the tuning function (modulation depth), q is

the physical movement direction, qPD is the preferred direction (PD), and ε is the noise or fitting error. Since the firing rates weremean-

subtracted (see above), the baseline term was always zero. The q parameter refers to instantaneous hand direction, which was

shifted back in time by 140 ms relative to neuronal responses. We also applied Equation 1 to EMG activations in place of firing rates.

In that case, direction was shifted backward by 100 ms. We note that preferred directions computed by this method are expressed

relative to physical space, rather than VR space. This distinction is important when describing PDs before and after the visuomotor

perturbation.

To compare PDs in the standard and rotated blocks, we computed the angular difference between the two tuning curves. The sta-

tistical significance of this difference was found using a bootstrap procedure. Trials were resampled with replacement 1000 times,

and the angular difference was computed for each iteration. We then computed the 95% confidence interval of this difference over

the 1000 iterations. If the confidence interval overlapped 0, the PD differencewas not considered to be significantly different. This test

is thus two-tailed, with an alpha level of 0.05. When comparing PDs, we required that the firing rates during both blocks were fit by a

cosine function with an R2 of at least 0.5. We used a significant change in PD as an operational definition for patterns of neuronal firing

potentially related to adaptation to the perturbation.

Trial Segmentation
We used factor analysis (FA) to identify independent components of firing across time for all recorded neurons. Typically, FA is

applied to neuronal data by treating each neuron as a ‘‘dimension,’’ and reducing the dimensionality to a few summary components.

Here, we instead used time bins as the dimensions input to FA, with each neuron contributing observations along those dimensions.

This process may be familiar as a spike-sorting method where principal components calculated from a temporal sample of voltage

are used to separate different spike waveforms. Here, we use the method to find temporal features of neurons’ firing rate pattern that

covary across reaches to different targets. Factor loadings spanned the entire trial, though we found that loadings for a given factor

were large only during a short time period and near-zero at other times. Thus, the factors corresponded to sequential temporal fea-

tures which were then used to segment the trial. Since we were interested in tuning patterns regardless of magnitude, we normalized

firings rates by their range at each time bin prior to applying FA. In practice, this step did not substantially alter the results.

Reverse Regression Analysis
We used reverse regression to find linear combinations of the neural data that could decode behavioral variables of interest. More

common decoding methods such as the Population Vector Algorithm (PVA) or Optimal Linear Estimator (OLE) rely on explicit tuning

model fits for each recorded unit, but here we sought to avoid these assumptions about encoding. Reverse regression is a simple

multiple regression approach that treats each neuron’s firing rate as an explanatory variable, and a variable of interest as the depen-

dent or response variable (Kass et al., 2005; Inoue et al., 2018). In our case, the variables to decode were the x- and y-components of

the displayed direction. The following equations describe the relationship:

Vx = kx +BxR+ ε (2)
Vy = ky +ByR+ ε (3)

where Vx and Vy are the x- and y-components of the displayed direction, kx and ky are constant offsets, Bx and By are 1-by-N vectors

of regression weights (one weight for each of the N neurons), R is a matrix of firing rates with size N-by-(time*conditions), and ε is

the noise or fitting error. The regression weight vectors represent scaled axes in neural space, chosen such that orthogonal projec-

tions onto these axes best correlate with the x- and y-components of the displayed movement direction. The free parameters in

Equations 2 and 3 were fit using ridge regression rather than ordinary least-squares regression. Ridge regression is useful when

regression terms are correlated with one another, as is often true for firing patterns of different neurons. Typically, the regularization
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parameter for ridge regression is chosen to maximize cross-validation performance. However, we found that performance was very

similar over a large range of values, with no clear maximum.We therefore arbitrarily chose a regularization strength of 1. That is, in the

regression loss function, we assigned equal weighting to the sum of squared residuals and the regularization term.

We applied Equations 2 and 3 to neural data from the start of the trial until 100ms aftermovement offset. The V variables were set to

zero until 50 ms after the target appeared. These pre-target time bins were included as an additional constraint on fitting, which

ensured that the decoder output was near zero when there was not yet any direction displayed. As with the trial segmentation pro-

cedure described above, we normalized firings rates by their range at each time bin prior to fitting, though this step was not critical.

DATA AND CODE AVAILABILITY

Data and code used in this manuscript will be available from the corresponding author upon reasonable request.
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